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Abstract

In this work, a survey of several curvature estimation methods for surface meshes
was conducted, and a comparison of two types of curvature estimation techniques
was conducted based on convergence studies. As a result of this work, a new and
improved method was proposed as an extension of one of the surveyed methods. The
new method robustly estimates normals, principal curvatures, mean curvatures and
Gaussian curvatures at vertices of general unstructured triangulations. The method
has been tested on complex meshes and has provided good results.

1 Introduction

Knowledge of the curvature of surfaces is important in a number of applications such
as flow simulations, computer graphics and animations, and pattern matching. It is
of particular importance to applications dealing with evolving surface geometry. Such
applications usually do not have smooth analytical forms for the surfaces forming the
model geometry. Instead, they have to deal with discrete data consisting of points on
the surface connected to form an unstructured mesh. Hence, it is important to be able
to reliably estimate local curvatures at points on such discrete surfaces.

In this work, a survey of several curvature estimation methods [1, 2, 3, 4, 5] for
surface meshes was conducted, and a comparison of two types of curvature estimation
techniques was conducted based on convergence studies. As a result of this work
a new and improved method was proposed as an extension of one of the surveyed
methods. The new method robustly estimates normals, principal curvatures, mean
curvatures and Gaussian curvatures at vertices of general unstructured triangulations.
The method has been tested on complex meshes and has provided good results.

There are three classes of methods for estimating higher order information such as
curvature from discrete surface information (e.g. nodes of a triangulation). The first
class of methods builds a global or local parametrization for the discrete surface and
computes curvature information from the derivatives of the parametrization [2, 6, 5].
The second class of methods fits a smooth surface to a local set of points around the
point of interest and uses the curvature of the surface at that point as the curvature
estimate. These methods do not necessarily need the points to be connected to form
a mesh in order to estimate the curvature, although initial estimation of the surface
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normal is facilitated by the availability of such a mesh. The smooth surface is usually
chosen to be a limited form of a quadratic polynomials [2]. The third class of methods
estimates the curvature directly from the triangulation by a variety of methods [3, 4]
such as discrete differential geometry.

In this work, the discrete differential geometry approach and 2 different types of
quadric fitting approaches were studied, and a convergence study conducted to see
which method provided the most accurate results. In the following sections, the
methods are first described briefly. Then the test setup for the convergence study
is described, followed by the results of the tests. Finally, results on large meshes are
presented to show that the chosen method works well for complex triangulations.

2 Curvature Estimation using Discrete Differ-

ential Geometry Operations

In Meyer et.al. [3], a curvature estimation method using spatial averaging of trian-
gulation data using discrete differential geometry concepts is outlined. The Gaussian
curvature is estimated using a discretized form of the Gauss-Bonet theorem applied
in the 1-ring neighborhood of a vertex, i.e., over the set of triangles connected to the
vertex. The mean curvature estimate is derived from a discretization of the Laplace-
Beltrami operator also applied to the 1-ring neighborhood. Given a patch of triangles
surrounding point xi as shown in Figure 1, the estimates for the Gaussian curvature,
Ki and mean curvature Hi, at xi, given by Meyer et.al. are:

Ki =
1
A

2π −
∑

j

θj

 (1)

2Hin̂i =
1

2A

∑
j

(cotαij + cotβij)(xi − xj) (2)

where A is some area around xi, n̂i is the normal vector at xi defined by Eq. 2, and
where xj , θj , αij and βij are as shown in the figure. Meyer et.al. show that the error
in the curvature computation is minimized when A is chosen to be the “Voronoi area”,
defined in each triangle by the point xi, the midpoints of the triangle edges, and the
circumcenter of the triangle, summed over all the triangles. The Voronoi area suggested
by the authors is given by:

Avor =
1
8

∑
j

(cotαij + cotβij)‖xi − xj‖2 (3)

In the case of the obtuse triangles (where the circumcenter is outside the triangle),
they suggest using a modified area using the midpoint of the edge opposite to the
obtuse angle instead of the circumcenter with the consequence that the errors are
higher. Although the authors show that the error is minimized by using Voronoi areas,
they do not present any convergence results.
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Figure 1: 1-ring neighborhood of vertex indicating the sub-area used for computation using
the method of Meyer et.al.

3 Curvature estimation by fitting quadrics

A survey of quadric fitting methods for estimating surface properties such as curvature
is presented by McIvor and Valkenburg [2] and more recently by Petitjean [7]. Quadric
fitting methods are based on the idea that smooth surface geometry can be locally
approximated using a quadratic polynomial surface. Therefore, quadric fitting methods
try to fit a quadric to points in a local neighborhood of each point of interest. The
quadric is fitted in a local coordinate frame positioned at the point of interest and with
the Z-coordinate axis aligned along an estimate for the surface normal at that point.
Then, the curvature of the quadric at the point of interest is taken to be the estimate
of the curvature for the discrete surface.

The detailed procedure for fitting a simple quadric of the form Z ′ = aX ′2+bX ′Y ′+
cY ′2 is given step-by-step [7] as:

1. Estimate the surface normal n̂ at the point of interest p. This estimation can be
done by simple or weighted averaging of the neighboring triangle normals or by
finding a least squares fitted plane to the point and its neighbors.

2. Position a local coordinate system (X ′, Y ′, Z ′) at the point with the Z ′ coordinate
along the estimated normal. To fix the X ′ coordinate axis, McIvor and Valkenburg
suggest aligning it with the projection of the global X axis onto the tangent plane
defined by n̂. This results in a rotation matrix, R = [r1, r2, r3]T , from the global
coordinate frame to the local coordinate frame, where:

r3 = n̂ r1 =
(I− n̂n̂T )̂i

‖ ˆI− nn̂T ‖̂i
r2 = r3 × r1 (4)

in which I is the identity matrix and î is the global X axis [1, 0, 0]T .
A situation not discussed in [2] and [7] is the degenerate case when the normal is
aligned with the global X-axis and r1 computed above is the null vector. In such
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a case, one can align the X ′ axis with the projection of the global Y axis on the
tangent plane by replacing î with ĵ in the equation for r1.

3. Select the set of points to be used in fitting the quadric. The simplest choice the
set of edge-connected neighbors of the node under consideration.

4. Map the coordinates of the selected points from the global to the local coordinate
system using the relation x′ = R(x− p).

5. Solve for the coefficients of the quadric by computing a least squares solution of
the equations  x2

1 x1y1 y2
1

...
...

...
x2

n xnyn y2
n


 a

b
c

 =

 z1
...

zn

 (5)

Note: the least squares solution to an overdetermined system Ax = b such Eq. 5
is given by x = (ATA)−1ATb.

6. Then the estimate of principal curvatures, κ1 and κ2, the Gaussian curvature K
and the mean curvature H, all at p, are given by:

κ1 = a + c +
√

(a− c)2 + b2 (6)
κ2 = a + c−

√
(a− c)2 + b2 (7)

K = 4ac− b2 (8)
H = a + c (9)

Estimates of the curvature using suvh a simple quadric are quite sensitive to es-
timates of the surface normal. The extended quadric fitting attempts to reduce this
sensitivity by including linear terms in the quadric that is fitted, i.e., the quadric is
given by Z ′ = aX ′2 + bX ′Y ′ + cY ′2 + dX ′ + fY ′. The coefficients of such a quadric
can then be used to compute a new estimate for the surface normal as:

n̂ =
1

(d2 + e2 + 1)1/2
[−d,−e, 1]T (10)

Using this new estimate of the surface normal, a new local coordinate system can
be computed at the point of interest, and a new quadric can be fitted to the points.
The process can be repeated until the surface normal estimates converge, and the
coefficients of the resulting quadric can be used to calculate the curvatures as:

K =
4ac− b2

(1 + d2 + e2)2
(11)

H =
a + c + ae2 + cd2 − bde

(1 + d2 + e2)3/2
(12)

It is also possible to extend the method by fitting quadrics with a non-zero constant
term to the points in a local neighborhood of the point of interest. Such a method,
called the full quadric method, allows the quadric to not pass through the point of
interest; however, this approach was not considered here.
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One disadvantage of the extended quadric method is that it requires at least five
points to obtain a unique solution instead of the three points required by the simple
quadric method. However, the method has been adapted in this study so that the local
neighborhood of a point is extended to its 2-level neighbors if it does not have enough
1-level neighbors. This allows for robust computation of the curvature at all points of
the mesh that are not on the surface boundary. On the surface boundary, the method
has been extended by reflecting the neighbors of the point to form ghost points so that
the curvature estimate is not one-sided.

The improved method that corrects for the degenerate case of the rotation matrix,
for the lack of sufficient points in the neighborhood and for the one-sidedness of the
curvature estimate on the boundary is named the extended quadric, extended patch
method. The extended quadric, extended patch method allows accurate and robust
curvature computations for complex unstructured triangulations.

4 Convergence Tests

Consider a hexagonal patch of triangles of radius L, whose vertices xi, i = 1, 6 and
center p all lie on a cylindrical surface C of fixed radius r < L1. Assume that axis of the
cylinder coincides with Z-axis and that the X-axis passes through the central vertex.
Then the coordinates of the central vertex p are given by (r, 0, 0). The coordinates of
x2 and x5 in the patch are (r, 0,−L) and (r, 0, L) respectively, putting them directly
below and above vertex p in the axial direction.

If the coordinates of an outer node of the hexagonal patch is given by (xi, yi, zi),
then the following relations must hold true

x2
i + y2

i = r2 from the equation of the cylinder (13)

(xi − r)2 + y2
i + z2

i = L2 length of the hexagon’s “spokes” are all L (14)

Assuming zi to be at ±L/ki, we get

xi =
1
2r

[
r2 − L2

(
1− 1

k2
i

)]
(15)

which can then be substituted in Eq. 13 to calculate yi.
For the hexagonal patch to be regular, it can be seen that z4 = z6 = L/2 and

z1 = z3 = −L/2. Therefore, for a regular hexagon, one can write

xi =
1
2r

[
r2 − 3

4
L2

]
(16)

Since this study is directed towards arbitrary unstructured meshes, it is more useful
to study an irregular hexagonal patch of triangles. To accomplish this, one of the
vertices, namely x3, of the regular hexagon is moved to so that z3 = −4L/5. Then the
remaining two coordinates are computed above equations so that the point remains on

1More specifically, each vector xj −p lies in its own half-plane, the half-planes have the line N normal to
C at p as their common line of intersection, and each xj also lies on a sphere of radius L centered on p.
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Figure 2: Hexagonal patch of elements on a cylinder

the cylinder and the sphere circumscribing the hexagon. This has the effect of only
altering the angles of two triangles in the patch and leaving the characteristic mesh size
(defined by the length, L, of the internal edges or “spokes” of the hexagon) unchanged.

Using the above formulas, one can reduce L, keeping r fixed, in order to reduce the
size of the hexagon. As the hexagon gets smaller, the nodes of the hexagon continue
to be on the cylinder, the quality of the triangles does not change much and the nodes
become more coplanar.

The convergence of any curvature estimation method can then be checked, by re-
ducing L from some intial value to some final value and estimating the curvature at
each step. In this work, the radius of the cylinder r is taken to be 2.0 and the length
of each “spoke” of the hexagon, L, is decreased from 0.5 to 0.05 in steps of 0.05.
The results of the tests with the spatial averaging method of Meyer et.al., the simple
quadric method, and the extended quadric method are tabulated in Table 1 and shown
in Figure 3.

One can see from the results that the spatial averaging method of Meyer et.al.
has bounded error but does not converge; moreover, this error is the highest of the
three methods tested (≈7%). The method of fitting simple quadrics converges to an
incorrect value that has 0.74% error. Elementary analysis of this method shows that if
the normal vector used is first order accurate, then the simple quadric fit yields zero’th
order accuracy (constant error) for the associated curvature estimates. The extended
quadric performs the best among the three methods, yielding curvatures converging to
the correct value. Again, an associated analysis shows that, here, the surface normal
converges quadratically (cubically for some surfaces) while the curvature exhibits linear
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Mesh size (L) Spatial Avg. of [3] Simple Quadric Ext. Quadric

0.5000 0.231580 0.250790 0.252723
0.4500 0.231583 0.250287 0.252204
0.4000 0.231475 0.249711 0.251752
0.3500 0.231590 0.249447 0.251336
0.3000 0.231577 0.249092 0.250970
0.2500 0.231583 0.248810 0.250678
0.2000 0.231572 0.248559 0.250420
0.1500 0.231570 0.248376 0.250230
0.1000 0.231640 0.248323 0.250172
0.0500 0.231654 0.248257 0.250107
0.0050 0.231596 0.248168 0.250024
0.0005 0.231575 0.248145 0.250000

Table 1: Mean curvature estimates for varying size of hexagonal patch of elements on a
cylinder using three different methods
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Figure 3: Convergence of Quadric Fitting Methods for Curvature Estimation on Hexagonal
Patch of Elements
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Figure 4: Mean curvature estimates on unstructured mesh of sphere by (a) Spatial Averaging
Method of Meyer et.al. (b) Simple Quadric Fitting (c) Extended Quadric Fitting (white
patches indicate locations at which an extended quadric could not be fitted due to insufficient
points) (d) Extended Quadric Fitting on an extended patch

convergence.

5 Results on General Meshes

The modified curvature estimation method was tried on several complex unstructured
meshes and has given good results.

Figure 4 shows the mean curvature distribution on the unstructured mesh of a
sphere of radius 1.0 computed by the various methods. As seen in the figures, the
results of the spatial averaging method of Meyer et.al. and the simple quadric method
are not very good. The extended quadric method gives excellent results (except that it
is not defined at locations where a node is connected to less than five adjacent nodes).
The extended quadric, extended patch method solves this problem and accurately
estimates the curvature at all points with a maximum error of 1.6%.

Figure 5a, Figure 5b and Figure 6 show the mean curvature distribution on unstruc-
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(a)
(b)

Figure 5: Mean curvature estimates for cow and rocker arm (mesh courtesy of Cyberware,
Inc.)

tured meshes of a cow, a rocker arm and an archaelogical artifact calculated using the
extended quadric, extended patch method. As seen from these figures, the method esti-
mates qualitatively reasonable curvatures at various features of these complex meshes.

6 Conclusions

In this study several curvature estimation methods for unstructured meshes were sur-
veyed, and three methods were studied more closely to see which provided the best
results. It was concluded that the extended quadric method with extensions devised by
the authors was the most accurate and robust procedure for estimating local curvatures
on complex surface triangulations.
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